
Theoret. Chim. Acta (Berl.) 64, 181-186 (1983) 

THEORETICA CHIMICA ACTA 

�9 Springer-Verlag 1983 

On the pairing of the natural orbitals for projected 
broken symmetry states 

Esper Dalgaard 

Department of Chemistry, University of Aarhus, DK-8000 Aarhus C., Denmark 

A pairing scheme for the natural orbitals of projected broken symmetry states, 
which can be expressed as a superposition of two generally non-orthogonal 
Slater determinants, is presented. The results obtained here are generalizations 
of a pairing scheme representation of natural orbitals derived recently by 
Hendekovi6 within the complex molecular orbital method. As a simple 
example the Kekul6 structure of benzene is discussed. 
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1. Introduction 

Simple models for the electronic structure of molecules have retained their 
importance in spite of the impressive advances in unitary group ab initio configur- 
ation interaction methods [1]. In particular we may mention the growing interest 
in valence bond theory and related geminal methods. Symmetry breaking in 
Har t ree-Fock calculations indicates strong correlation effects. A systematic 
method for an approximate handling of such correlation effects is offered by 
L/Swdin's extended Har t ree-Fock theory [2]. 

The simplest applications of the extended Har t ree-Fock method lead to ground 
state representatives, which can be expressed as a linear combination of two 
generally non-orthogonal Slater determinants, e.g. when gerade or ungerade 
states are projected out from a single determinant of symmetry broken orbitals 
[3] for a molecule having inversion symmetry. Another  case in which a superposi- 
tion of two states becomes relevant as a starting point arises, when a molecule 
has two equivalent classical resonance structures, e.g. the Kekul6 structures of 
benzene. 
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It is the purpose of this brief communication to discuss a pairing scheme for the 
natural orbitals, which are derived from a state vector of this simple form. The 
results presented here are generalizations of a pairing representation of the 
natural orbitals, which have been discovered recently by Hendekovi6 and Pavlovi6 
[4] for the so-called complex molecular orbital method [5]. In this method the 
ground state is expressed as the real part of a single determinant I~b), i.e. 

]CMO) = Re 14') = �89 14~*)). (1) 

The complex molecular orbital method is therefore a form of projected Hartree-  
Fock theory [6] corresponding to time-reversal symmetry. 

2. The natural orbital pairing scheme 

We proceed now to analyze the one-particle density matrix for a reference state, 
which can be expressed as 

10) = ]~b~)+l~bE)K = a-~ . . . a+~ l v a c )  + b ~  . . . b +~ lvac)K (2) 

in unnormalized form. K is an expansion coefficient, which takes into account 
that the two states need not have the same weight for the pairing theorem to 
hold. Creation operators for the two sets of n molecular spin orbitals, 

{ U t ( ~ ) l l =  1 . . . . .  n} and {vt(sr 1 . . . . .  n} (3) 

which are occupied in I~bl) and I~b2), respectively, are denoted by {a~ } and {b~-}. 
No symmetry labels for the molecular orbitals will be introduced here, because 
the results which we shall obtain are not related to symmetry. Block diagonali- 
zations due to either spin or point group symmetry can always be added at the 
end [4]. 

There is no loss of generality in assuming that each of the sets {ul} and {vt} are 
orthonormal so that 

[al, a~,]+ = [ b t ,  b[,]+ = 6,r (4) 

while keeping the overlap matrix between the two sets completely general: 

Atr= f d~ ut(~)*Vr(sC). (5) 

Correspondingly, we have the following anticommutation relations between the 
two sets of creation operators [7], 

[al, b~]+ = An,; [at, br]+ = 0. (6) 

Our first observation concerning the one-particle density matrix is that at most 
2n natural orbital occupation numbers, vs, can be non-vanishing, since the state 
10) is constructed from 2n spin orbitals. Any natural orbital for which vs # 0 must 
be of the form 

O s ( ~ ) -  ( u l ( ~ ) X i s +  v l ( ~ ) Z t s )  (7) 
1 
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and the coefficients Xts and Zts can be derived from the eigenvalue equation [2, 7]: 

f d~'(ff+(~') ff(~))O~(~ ') = O~(~) ~ (8) 

where ~b(s c) is the electronic field operator [7] and (. �9 -) denotes the expectation 
value in the state 10). From the identities 

at=- I d~u*(~)qJ(~) and b,=-I d~v*(~)qJ(~) (9) 

and Eqs. (5), (7) and (8) we obtain the equation system 

(a+a) ( a + b ) ~ X * ~  {1 A*~X*~(~ , I .  0 ) (10) 
(b+a) (b+b)J[Z*J  = 1 J L Z * J \ 0  "'v2. 

where the symbol ..... is used for matrix transposition. The next step is to invoke 
the polar decomposition [8] for the matrices A and A*: 

~ =  VSU + or A * = U S * V  + (11) 

where U and V are unitary n • n matrices and S is a diagonal matrix. A detailed 
account on the polar decomposition of matrices can be found in the text by 
Gantmacher [8]. The polar decomposition was introduced in molecular orbital 
theory by Amos and Hall [9] and applied by Martin [10] in a study of symmetry 
breaking. The matrices U, V and S are not completely unique since the columns 
of V and U may be multiplied by arbitrary phase factors if the inverse phase 
factors are absorbed in S. We choose phase factors such that I uI--Iwl-- 1. For 
this reason we allow for the possibility that the elements of S are complex numbers. 

Eq. (10) can now be written as 

a+a )  (ce+/3)~/K*~={1S S * ~ K * ~ v l " . . 0 z ,  } (12) 
(/3+~) (,8+~)JLL*J lJLL*JLO 

where K * =  U+X * and L * =  V+Z *. New annihilation operators are defined as 

oz j = Z a,, Ulj ; fl j = Z b, Vzj. (13) 

Each of the sets {% a~7 } and {/%,/3 3 } satisfy ordinary anticommutation relations, 
while 

[% 13j, ]+ = ( +" + V AU)~j, = 3jj, Sj. (14) 

Unitary transformations, with determinant one, among occupied orbitals do not 
change a Slater determinant so that 

162>=fi~ . . .W.Ivac) .  ( 1 5 )  

Then Eq. (14) shows that 

 ,162) = �9 �9 [ O ~ j ,  f i l ] + f i ; + l  " " " f l +  Ivac)=,,l~2)S, (16) 

and similarly/3j14,0 = ,~j161)s*. 
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The matrix elements occurring in the left hand side of Eq. (12) are obtained 
from Eqs. (2), (15) and (16) as 

(OIo~Tat, lO) = 6jt,.[1 + IKI21stl2+ 2 Re (KP)} (17) 

<olt~,.+t~i, lo) -- @{Isjl2 + 1KI2+2 Re (KP)} (18) 

<01~T&10> = 8As~' + I~l=s~ ' + K P / S  t + K*S*P*} (19) 

(010) = 1 +IK 12 + 2 Re (KP) (20) 

where 

P = (6,162) = SIS2""  S.. (21) 

Eq. (12) can now be rearranged as n independent (2 x 2) equations of the form 

{ aj b t l IKtgl= { 1, St]~Kt~,~v 
b* ct;tLt,.,J Sj 1 J [L j , , J  " /x = 1, 2 (22) 

where the paired natural orbitals are labelled j/x;/x = 1, 2, and 

at = ( & @ ;  bj = (/37a~); c i = (t3TOt); j = 1, 2 , . . .  n. (23) 

Thus we find that the paired natural orbital occupation numbers are given by 
the roots of the determinant 

(a j -u)  (bj-vSt) =0.  (24) 
(b* - uS*) ( c j -  z,) 

The sum of the two roots is 

vi~ + vt~ = [a t + cj - 2 Re (b'St)]~(1 - I S t r )  = 1. (25) 

In terms of the original basis sets {u~} and {vt} the natural orbitals can be written 

(26) oj,~ = atKj,.  + ~jLt,~ 

where 

at(~) = E ut(r u ~  ; t~j(s = Y~ vz(~:) V~. (27) 

Similarly, creation operators corresponding to the natural orbitals are given by 

+ + + aj~, = a i Kj, + ~j Lj•. (28) 

Hendekovi6 and Pablovi6 [11] have already demonstrated how such operators 
may be used to simplify configuration interaction calculations based on the state 
]CMO) in Eq. (1) as the point of departure. 

3. Application to ~r-bonds in benzene 

We close this communication by giving a brief discussion of the Kekul6 structures 
of benzene as an example of applications of the pairing representation in elemen- 
tary molecular orbital theory. The localized or-bonds are described in terms of 
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the six atomic 7r-orbitals as 

2 2 

6 4 4 
5 5 

l'tl = (Pl "1-P2)/~/2 

U2 = ( p3 + P4) /"~/-~ 

U3 = ( P5 + P6) / ~/'~ 

Vl = ( p 2 +  p3)/~/2 

V2 = ( p4 + ps)/~/'2 (29) 

V3 = (p6 + p l ) /4c2  

where we have assumed that the atomic ~-orbitals, Pi, are orthonormal. The 
Kekul6 ground state representative is 10)= 14,1)+ 14,2), with the definition 

[4,1) = al,~ + �9 �9 �9 a3t3+ Ivac); 14,2)-- bl~, + " "  b~r [vac). (30) 

The state [0) has the correct symmetry, 1Alg, in D6h S O  that the natural orbitals 
are identical to the delocalized Hiickel molecular orbitals. The various matrix 
transformations outlined in the previous section can therefore easily be written 
down using symmetry. Thus, we obtain the overlap matrix for the spatial orbitals 
{ui} and {Vl} and its polar decomposition as 

1 1 

�89 ; = USfZ  (31) 
�89 

/ 1/~/_3 2/~/6 0 1 0 0 ] [  1/~/5 1 /45  1/~/g \ 

\ 1 / 4 3  - 1 / 4 6  - 1 / 4 2 / [ . 0  0 - � 8 9  0 1/42 / 

We have made sure here that I U[ = [VI = 1. Paired orbitals are now, according 
to Eq. (27), given as 

~, = ( u l + u 2 + u 3 ) / ~ / - 3 ;  ~ 1 = ( v l + v 2 + v 3 ) / ~ / - 3  

u2 = (2ul - u2-  u3)/~/6; v2 = (-Vl + 2v2-  v3)/~/-6 (32) 

a3 = (u2-  u3)/42; ~ = (-v~ + v3)/4-2. 

Obviously, ffl = ~1 is the totally symmetric natural orbital, which therefore attains 
a total occupancy of 2. The remaining pairs (tTz, *Jz) and (t73, *J3) are degenerate 
so that Eq. (22) has to be solved only once. The various terms in Eq. (22) are 

P =" S l o : S l 3 .  �9 �9 S 3 / 3  = 1/16; (010) = 17/8 
(33) 

a2 = a3 = c2 = c3 = 11/17; b2 = b3 --- -37 /68 .  

The results are given in Table 1, which also includes results for a realistic zr-Tr 
overlap of 0.25. 

A quantity of some interest when comparing the Kekul~ ground state and the 
Hiickel molecular orbital ground state representative, [MO), built from the first 
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Table 1 
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Natural Occupation numbers 
orbital (PjIPj+1) =0 (Pj] Pj+I) =0.25 

a2u 2 2 
elg ~=3.18 3.61 
e2, ~=0.82 0.39 
b2a 0 0 

th ree  na tu ra l  orb i ta l s  in Tab le  1, is the  ove r l ap  in tegra l  

(MOIKekul6 )  = ((MO[q~l} + ( S O l  ~b2))/(010) 1/2. (34) 

W e  find tha t  

J'49~/~7 = 0 .7717 for  (Pj IPj+I)= 0 
(MOlKeku l6 )  = / 0 . 8 9 7  4 for  (PjIPj§ (35) 

Thus  we see that  the  two g round  s ta te  r ep resen ta t ives  become  m o r e  s imilar  when 
~r-~- ove r l ap  is t aken  into  account .  Likewise ,  the  r a the r  unreal is t ic  p r o m o t i o n  of 
e lec t rons  in to  an t ibond ing  orb i ta l s  in the  Keku l4  m o d e l  is significantly r educed  
when 7r-~- ove r l ap  is inc luded.  Similar  consequences  of ove r l ap  is found  in 
compar i sons  of the  mo lecu la r  o rb i ta l  and  va lence  bond  descr ip t ions  of the  
h y d r o g e n  molecu le  [12]. 
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